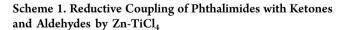
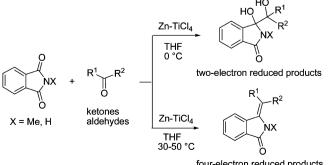

Reductive Coupling of Phthalimides with Ketones and Aldehydes by Low-Valent Titanium: One-Pot Synthesis of Alkylideneisoindolin-1ones

Naoki Kise,* Yusuke Kawano, and Toshihiko Sakurai

Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, 4-101, Koyama-cho Minami, Tottori 680-8552, Japan

Supporting Information

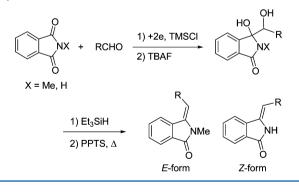

ABSTRACT: The reductive coupling of phthalimides with ketones and aldehydes by Zn-TiCl₄ in THF gave two- and four-electron reduced products, 3-hydroxy-3-(1-hydroxyalkyl)isoindolin-1-ones and alkylideneisoindolin-1-ones, selectively by controlling the reaction conditions. Therefore, the one-pot synthesis of alkylideneisoindolin-1-ones from phthalimides was effected by this reaction. Although the alkylideneisoindolin-1-



ones prepared from phthalimides and aldehydes were formed as mixtures of geometric isomers in most cases, the geometric ratios could be increased by reflux in cat. PPTS/toluene. After the isomerization, the E-isomers of N-methyl substituted alkylideneisoindolin-1-ones $(X = Me, R^1 = R, R^2 = H)$ and the Z-isomers of N-unsubstituted alkylideneisoindolin-1-ones $(X = H, R^2 = H)$ $R^1 = H, R^2 = R$) were obtained preferentially.

INTRODUCTION

Reductive cross coupling of phthalimides with carbonyl compounds is a useful method for the synthesis of 3-substituted isoindoline-1-ones. To date, this type of reaction has been effected using SmI₂ as a reducing agent¹ and electroreduction,² and applied to the synthesis of isoindolone alkaloids.^{1b,2c} On the other hand, low-valent titanium is well-known as a powerful reagent for the reductive cross coupling of two different carbonyl compounds.^{3,4} Recently, we also reported the reductive coupling of uracils⁵ and N-methoxycarbonyl lactams⁶ with benzophenones by low-valent titanium. In this paper, we report the reductive coupling of phthalimides with ketones and aldehydes by low-valent titanium generated from Zn-TiCl₄ (Scheme 1). It is noted that two- and four-electron reduced products could be prepared selectively by controlling the

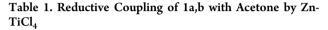


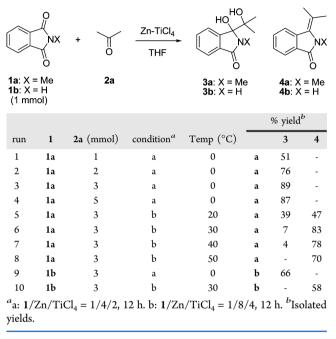
four-electron reduced products

reaction conditions. We previously reported the electroreductive coupling of phthalimides with aldehydes and following transformation of the resulting 3-hydroxy-3-(1hydroxyalkyl)isoindolin-1-ones to the corresponding alkylideneisoindolin-1-ones (Scheme 2).^{2d} However, the substrate were

Scheme 2. Electroreductive Coupling of Phthalimides with Aldehydes and Following Transformation to Alkylideneisoindolin-1-ones

restricted to aldehydes in the electroreductive coupling, thus ketones did not gave adducts with phthalimides. Furthermore, the reductive coupling by low-valent titanium allowed one-pot synthesis of the four-electron reduced products, alkylideneisoindolin-1-ones.⁷ In addition, the geometric ratios of the alkylideneisoindolin-1-ones obtained by the one-pot synthesis from phthalimides and aldehydes could be increased by reflux

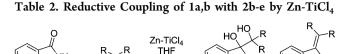

Received: September 25, 2013 Published: November 22, 2013


The Journal of Organic Chemistry

in cat. PPTS/toluene. In particular, the Z-isomers of Nunsubstituted alkylideneisoindolin-1-ones could be obtained exclusively.

RESULTS AND DISCUSSION

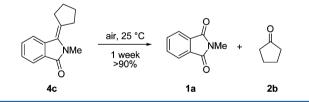
1. Reductive Coupling of Phthalimides with Ketones by $Zn-TiCl_4$. The reaction conditions were investigated using *N*-methylphthalimide (1a) and acetone (2a) as the substrates and the results are summarized in Table 1. The molar ratio of



 $Zn/TiCl_4$ was fixed to 2/1. Initially, the reaction was carried out with the molar ratio of $1a/\text{TiCl}_4$ as 1/2 in THF at 0 °C for 12 h with varying the molar ratio of 1a/2a from 1/1 to 1/5 (runs 1– 4). In these cases, 3-hydroxy-3-(2-hydroxypropan-2-yl)-2methylisoindolin-1-one (3a) was produced as a two-electron reduced product. It was shown that the best yield of 3a (89%) was obtained, when the ratio of 1a/2a was 1/3 (run 3). Therefore, the ratio of 1a/2a was subsequently fixed to 1/3. Next, the reaction was performed with the ratio of $1a/2a/TiCl_4$ as 1/3/4 in THF at 20-50 °C for 12 h (runs 5-8). Fourelectron reduced product 2-methyl-3-(propan-2-ylidene)isoindolin-1-one (4a) was formed at the elevated temperature and the best yield of 4a (83%) was obtained from the reduction at 30 $^\circ C$ (run 6). When phthalimide (1b) was employed in place of 1a, the reactions under the same conditions as runs 3 and 6 gave 3b (66%) and 4b (58%), respectively (runs 9 and 10).

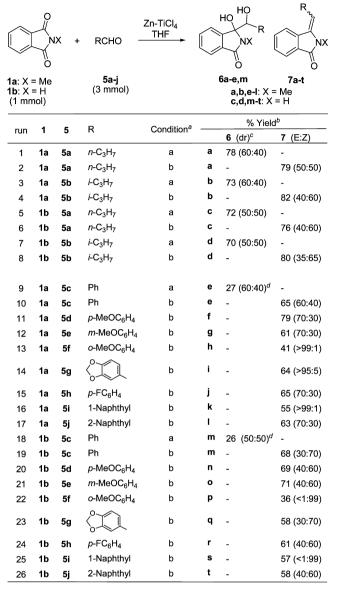
The reductive coupling of 1a,b with aliphatic cyclic ketones 2b-e was carried out under the same conditions as runs 3 and 6 (conditions a and b) in Table 1 (Table 2). In all cases, 3-(1-hydroxyalkyl)isoindolin-1-ones 3c-j were produced selectively in satisfactory yields under the condition a. Although alkylideneisoindolin-1-ones 4c-j were formed under the condition b, the isolated yields were relatively low. The alkylideneisoindolin-1-ones 4, especially *N*-methyl substituted 4c-f, were very labile and readily decomposed to 1a and 2b-e by air oxidation. Therefore, 4d-f could not be isolated owing

٧X



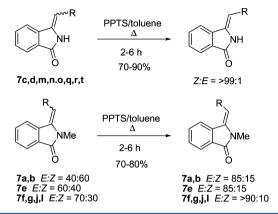
()) 0 'n 2b: cyclopentanone 2c: cyclohexanone 1a: X = Me 1b: X = H 3c-f: X = Me 4c-f: X = Me 4g-j: X = H 3g-j: X = H 2d: cycloheptanone (1 mmol) 2e: t-butylcyclohexanone (3 mmol) % yield^b 2 condition^a 3 run 1 4 1 1a 2b 82 a с 2 1a 2b b 28 с 3 1a 2c d 83 a 2c b d d 4 1a 5 2d 66 1a a e 6 1a 2d b e d 7 1a 2e a f 86 8 1a 2e b f d 9 1b 2b 64 a g 10 1b 2b 38 ь g 11 1b 2c 71 a h 12 1b h 51 2c b 13 1b 2d 65 a i 14 1b 2d b 37 i 15 1b 2e a i 70 41 16 1b 2e b ^{*a*}a: $1/Zn/TiCl_4 = 1/4/2$, 0 °C, 12 h. b: $1/Zn/TiCl_4 = 1/8/4$, 30 °C,

12 h. ^bIsolated yields. ^cIsolated by recrystallization. ^dCould not be isolated.


to their degradation during isolation. While 4c could be barely isolated by recrystallization, it was completely decomposed in $CDCl_3$ solution within one week by standing at 25 °C under the atmosphere (Scheme 3). Since similar photooxidative

Scheme 3. Decomposition of 4c by Air Oxidation

cleavage of enamines has been reported⁸ and the cleavage of 4c was slow in the dark, it is likely that the oxidative cleavage of 4c-f requires photochemical activation.

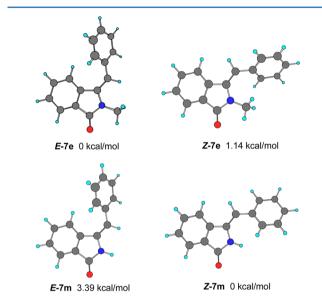

2. Reductive Coupling of Phthalimides with Aldehydes by Zn-TiCl₄. The reductive coupling of phthalimides 1a,b with aldehydes 5 by low-valent titanium were also carried out under the conditions a and b (Table 3). When the aldehydes were aliphatic (5a,b), both of 3-(1-hydroxyalkyl)-isoindolin-1-ones 6a-d and alkylideneisoindolin-1-ones 7a-d were obtained as mixtures of two stereoisomers in good to high yields (runs 1–8). Since 7 prepared from aldehydes were relatively stable differently from 4 derived from cyclic ketones as describe above, the condition b was performed at 50 °C to shorten the reaction time (2 h). On the other hand, benzaldehyde (5c) brought about modest yields of 6e and 6m under the condition a (runs 9 and 18). In these cases, pinacols were mainly formed by homocoupling of 5c (>80%)

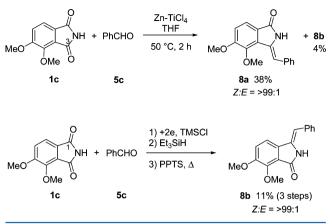
^{*a*}a: $1/Zn/TiCl_4 = 1/4/2$, 0 °C, 12 h. b: $1/Zn/TiCl_4 = 1/8/4$, 50 °C, 2 h. ^{*b*}Isolated yields. ^cDiastereomeric ratio determined by ¹H NMR analysis. ^{*d*}1,2-Diphenylethane-1,2-diol was mainly obtained.

based on 5c). However, benzylideneisoindolin-1-ones 7e-twere obtained in moderate to good yields from aromatic aldehydes 5c-j under the condition b. The major byproducts under the condition b were McMurry-type adducts of aldehydes, 1,2-diarylethenes (60-70% yields based on 5c-j). The *E*-isomers of **7e**–**l** were selectively formed from *N*-methyl substituted 1a (runs 10-17), whereas the Z-isomers of 7m-t were preferentially produced from 1b (runs 19-26). As previously reported,^{2d} the obtained geometric mixtures of the N-unsubstituted benzylideneisoindolin-1-ones 7c,d,m,n,o,q,r,t were exclusively transformed to the Z-isomers alone (Z:E =>99:1) by reflux in toluene containing a catalytic amount of PPTS, since the Z-isomers are thermodynamically much more stable than the E-isomers (Scheme 4). Similarly, the E:Z ratios of N-methyl substituted benzylideneisoindolin-1-ones 7a,b,e,f,g,j,l were increased by reflux in cat. PPTS/toluene. In the N-methyl substituted 7, the E-isomers are supposed to be more stable than the Z-isomers. This prediction is supported by

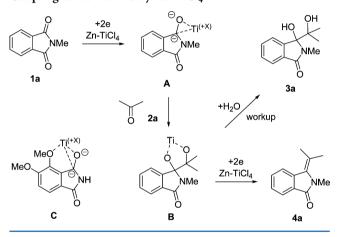
Scheme 4. Isomerization of 7 by Reflux in cat. PPTS/ Toluene

the DFT calculations of E-7e and Z-7e at the B3LYP/6-311+G(2d,p) level in toluene (PCM) at 383 K; E-7e is more stable (1.14 kcal/mol) than Z-7e (Figure 1). The E:Z ratio of




Figure 1. Optimized structures and relative energies of geometric isomers of 7e and 7m calculated at the B3LYP/6-311+(2d,p) level in toluene (PCM) at 383 K.

7e derived form the energy difference is 82:18 and agrees well with the experimental result (E:Z = 85:15). Incidentally, the energy difference between E-7m and Z-7m calculated at the same level is 3.39 kcal/mol (Figure 1) and then the Z:E ratio of 7m is estimated to be 99:1.


It is noteworthy that the reductive coupling of 4,5dimethoxyisoindoline-1,3-dione (1c) with 5c under the condition b gave Z-8a mainly (38%) together with a small amount of its regioisomer Z-8b (Scheme 5). The major adduct Z-8a was formed from the addition at the 3-position in 1c. In contrast, the electroreductive coupling of 1c with 5c selectively proceeded at the 1-position in 1c to give Z-8b.^{2d} The same regioselectivity was reported in the intramolecular coupling of a similar phthalimide substrate using SmI₂ as a reducing agent.^{1b}

3. Reaction Mechanism of the Reductive Coupling. The presumed reaction mechanism of the reductive coupling of *N*-methylphthalimide (1a) with acetone (2a) is exhibited in Scheme 6. Since 1a is more reducible than $2a_{,}^{2d}$ 1a is reduced

Scheme 5. Reductive Coupling of 1c with 5c by $\rm Zn-TiCl_4$ and Electroreduction

Scheme 6. Presumed Reaction Mechanism of Reductive Coupling of 1a with 2a by Zn-TiCl₄

by low-valent titanium to give dianion intermediate A. The nucleophilic addition of A to 2a produces adduct B. Since the adduct B is stable at 0 °C, the workup of B with water gave 3a. At elevated temperature (>20 °C), further reduction of B by low-valent titanium proceeds to afford 4a. In the reduction of 1c, dianion intermediate C is regioselectively formed owing to the chelation of titanium ion and the 4-methoxy group in 1c.

CONCLUSION

The reductive coupling of phthalimides 1 with ketones 2 and aldehydes 5 by Zn-TiCl₄ gave two-electron reduced products, 3-hydroxy-3-(1-hydroxyalkyl)isoindolin-1-ones 3 and 6, and four-electron reduced products, alkylideneisoindolin-1-ones 4 and 7, respectively. The two- and four-electron reduced products could be obtained selectively by controlling the reaction conditions. Therefore, the one-pot synthesis of alkylideneisoindolin-1-ones 4 and 7 was realized by this method. The alkylideneisoindolin-1-ones 4, especially derived from N-methylphthalimide 1a, were significantly sensitive to air oxidation. Although the alkylideneisoindolin-1-ones 7 were obtained from aldehydes 5 as mixtures of their geometric isomers in most cases, the proportions of the thermodynamically more stable isomers, namely, the E-isomers of N-methyl substituted 7a,b,e-l and the Z-isomers of N-unsubstituted 7c,d,m-t, could be increased by reflux in cat. PPTS/toluene. Especially, the Z-isomers of N-unsubstituted 7c,d,m-t could be obtained exclusively after the isomerization.

EXPERIMENTAL SECTION

General Methods. Column chromatography was performed on silica gel 60. THF was distilled from sodium benzophenone ketyl radical.

Typical Procedure of Reductive Coupling by Ti-ZnCl₄. To a solution of **1a** (161 mg, 1.00 mmol), **2a** (174 mg, 3.00 mmol), and zinc powder (0.26 g, 4.0 mmol) in THF (10 mL) was added TiCl₄ (0.22 mL, 2.0 mmol) dropwise at 0 °C and then the dark blue suspension was stirred for 12 h at this temperature. To the mixture was added 1 M HCl (20 mL) at 0 °C and the mixture was stirred for 15 min at 25 °C. The mixture was extracted with ethyl acetate three times. The organic layer was washed with aqueous NaCl and dried over MgSO₄. After the solvent was removed, the residue was purified by column chromatography on silica gel to give **3a** in 89% yield (197 mg). Compounds **6a**, ^{2d} **6b**, ^{2d} **6e**, ^{2d} **6m**, ^{2d} Z-7c, ⁹ Z-7d, ^{7f} E-7e, ^{2d,7a} E-7i, ^{2d} Z-7m, ^{2d,7f,h,t,k} Z-7n, ^{7h} Z-70, ^{2d,7h} Z-7q, ^{2d,7f} Z-7r, ^{2d} Z-7t, ^{2d,7f,h} Z-8a, ^{7f} and Z-8b^{2d} were known.

3-Hydroxy-3-(2-hydroxypropan-2-yl)-2-methylisoindolin-1one (3a). White solid (197 mg, 89%); *Rf* 0.2 (hexanes-ethyl acetate, 1:2); mp 177–178 °C; IR (ATR) 3503, 3215, 1670, 1616, 1474, 959, 932, 818, 768, 700, 677, 670 cm⁻¹; ¹H NMR (CDCl₃) δ 0.98 (s, 3H), 1.37 (s, 3H), 2.68 (s, 1H), 2.88 (s, 3H), 4.36 (s, 1H), 7.38–7.42 (m, 1H), 7.48–7.52 (m, 1H), 7.53–7.57 (m, 1H), 7.64–7.67 (m, 1H); ¹³C NMR (CDCl₃, DMSO-*d*₆) δ 23.7 (q), 25.8 (q), 26.2 (q), 75.6 (s), 93.0 (s), 122.2 (d), 123.7 (d), 128.8 (d), 130.8 (d), 132.3 (s), 146.0 (s), 167.6 (s). Anal. Calcd for C₁₂H₁₅NO₃: C, 65.14; H, 6.83; N, 6.33. Found: C, 65.11; H, 6.88; N, 6.24.

3-Hydroxy-3-(2-hydroxypropan-2-yl)isoindolin-1-one (3b). White solid (137 mg, 66%); *Rf* 0.3 (hexanes-ethyl acetate, 1:5); mp 189–190 °C; IR (ATR) 3372, 3237, 1674, 1616, 1474, 984, 957, 947, 837, 808, 770, 739, 700 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 0.92 (s, 3H), 1.22 (s, 3H), 4.60 (brs, 1H), 6.22 (brs, 1H), 7.43–7.47 (m, 1H), 7.52–7.57 (m, 2H), 7.63–7.66 (m, 1H), 8.55 (brs, 1H); ¹³C NMR (DMSO-*d*₆) δ 24.8 (q), 25.2 (q), 73.6 (s), 91.0 (s), 122.1 (d), 124.5 (d), 128.8 (d), 131.5 (d), 132.5 (s), 148.3 (s), 168.7 (s). Anal. Calcd for C₁₁H₁₃NO₃: C, 63.76; H, 6.32; N, 6.76. Found: C, 63.77; H, 6.35; N, 6.64.

3-Hydroxy-3-(1-hydroxycyclopentyl)-2-methylisoindolin-1one (3c). White solid (203 mg, 82%); *Rf* 0.3 (hexanes-ethyl acetate, 1:5); mp 235 °C; IR (ATR) 3200, 3134, 1672, 1618, 1474, 968, 934, 916, 883, 870, 826, 771, 745, 700, 691, 650 cm⁻¹; ¹H NMR (CDCl₃, DMSO- d_6) δ 1.45–1.86 (s, 7H), 2.07–2.15 (m, 1H), 3.12 (s, 3H), 3.44 (s, 1H), 6.20 (s, 1H), 7.44–7.48 (m, 1H), 7.49–7.54 (m, 1H), 7.68–7.71 (m, 1H), 7.73–7.76 (m, 1H); ¹³C NMR (DMSO- d_6) δ 23.1 (t), 24.3 (t), 26.2 (q), 35.0 (t), 36.5 (t), 84.7 (s), 92.8 (s), 121.8 (d), 123.9 (d), 128.7 (d), 131.0 (d), 133.0 (s), 148.0 (s), 167.3 (s). Anal. Calcd for C₁₄H₁₇NO₃: C, 68.00; H, 6.93; N, 5.66. Found: C, 67.95; H, 6.94; N, 5.60.

3-Hydroxy-3-(1-hydroxycyclohexyl)-2-methylisoindolin-1one (3d). White solid (217 mg, 83%); *Rf* 0.5 (hexanes-ethyl acetate, 1:5); mp 175 °C; IR (ATR) 3420, 3306, 1655, 1618, 1477, 984, 974, 951, 939, 905, 891, 858, 841, 804, 760, 704, 698, 652 cm⁻¹; ¹H NMR (CDCl₃) δ 0.75–0.84 (m, 1H), 0.87–0.99 (m, 1H), 1.44–1.64 (m, 7H), 1.80–1.88 (m, 1H), 2.29 (s, 1H), 2.98 (s, 3H), 3.84 (s, 1H), 7.41–7.45 (m, 1H), 7.49–7.53 (m, 1H), 7.63–7.67 (m, 2H); ¹³C NMR (CDCl₃) δ 21.0 (t), 21.1 (t), 25.3 (t), 26.8 (q), 30.3 (t), 32.7 (t), 76.8 (s), 94.0 (s), 122.6 (d), 124.2 (d), 129.2 (d), 131.1 (d), 131.9 (s), 145.6 (s), 168.1 (s). Anal. Calcd for C₁₅H₁₉NO₃: C, 68.94; H, 7.33; N, 5.36. Found: C, 68.91; H, 7.35; N, 5.29.

3-Hydroxy-3-(1-hydroxycycloheptyl)-2-methylisoindolin-1one (3e). White solid (182 mg, 66%); *Rf* 0.5 (hexanes-ethyl acetate, 1:5); mp 222 °C; IR (ATR) 3489, 3181, 1655, 1616, 1476, 997, 961, 939, 920, 849, 818, 766, 746, 707, 700, 689 cm⁻¹; ¹H NMR (CDCl₃, DMSO- d_6) δ 1.09–1.33 (m, 4H), 1.37–1.59 (m, 4H), 1.62–1.72 (m, 2H), 1.84–1.89 (m, 1H), 1.96–2.03 (m, 1H), 3.11 (s, 3H), 3.32 (brs, 1H), 6.19 (s, 1H), 7.45–7.53 (m, 2H), 7.67–7.70 (m, 1H), 7.73–7.77 (m, 1H); ¹³C NMR (DMSO- d_6) δ 22.0 (t), 22.2 (t), 26.9 (q), 28.5 (t), 28.9 (t), 34.6 (t), 35.6 (t), 79.1 (s), 93.8 (s), 121.9 (d), 124.7 (d), 129.0 (d), 131.1 (d), 132.5 (s), 147.0 (s), 167.1 (s). Anal. Calcd for

The Journal of Organic Chemistry

 $\rm C_{16}H_{21}NO_3:$ C, 69.79; H, 7.69; N, 5.09. Found: C, 69.72; H, 7.68; N, 5.04.

3-(4-*tert***-Butyl-1-hydroxycyclohexyl)-3-hydroxy-2-methyl**isoindolin-1-one (3f). White solid (273 mg, 86%); *Rf* 0.3 (hexanesethyl acetate, 1:2); mp 177 °C; IR (ATR) 3503, 3326, 1655, 1614, 1474, 991, 970, 922, 814, 771, 758, 702 cm⁻¹; ¹H NMR (CDCl₃) δ 0.70–0.84 (m, 2H), 0.80 (s, 9H), 1.26–1.40 (m, 2H), 1.46–1.53 (m, 1H), 1.54–1.66 (m, 3H), 1.87–1.93 (m, 1H), 2.33 (s, 1H), 2.91 (s, 3H), 4.13 (s, 1H), 7.38–7.42 (m, 1H), 7.48–7.52 (m, 1H), 7.55–7.58 (m, 1H), 7.63–7.66 (m, 1H); ¹³C NMR (CDCl₃) δ 22.1 (t), 22.2 (t), 27.1 (q), 27.7 (t), 32.5 (s), 33.6 (t), 47.6 (d), 76.7 (s), 94.2 (s), 123.1 (d), 124.5 (d), 129.7 (d), 131.5 (d), 132.2 (s), 145.7 (s), 168.4 (s). Anal. Calcd for C₁₉H₂₇NO₃: C, 71.89; H, 8.57; N, 4.41. Found: C, 71.86; H, 8.59; N, 4.40.

3-Hydroxy-3-(1-hydroxycyclopentyl)isoindolin-1-one (3g). White solid (149 mg, 64%); *Rf* 0.3 (hexanes-ethyl acetate, 1:5); mp 179–180 °C; IR (ATR) 3200, 3134, 1672, 1618, 1474, 968, 934, 916, 883, 870, 826, 771, 745, 700, 691, 650 cm⁻¹; ¹H NMR (DMSO-*d₆*) δ 1.20–1.29 (m, 1H), 1.41–1.71 (m, 6H), 2.00–2.08 (m, 1H), 4.39 (brs, 1H), 6.27 (brs, 1H), 7.42–7.46 (m, 1H), 7.50–7.56 (m, 2H), 7.61–7.65 (m, 1H), 8.56 (brs, 1H); ¹³C NMR (DMSO-*d₆*) δ 24.3 (t), 24.5 (t), 35.3 (t), 35.8 (t), 84.7 (s), 90.5 (s), 122.1 (d), 124.1 (d), 128.7 (d), 131.6 (d), 132.7 (s), 148.8 (s), 168.9 (s). Anal. Calcd for C₁₃H₁₅NO₃: C, 66.94; H, 6.48; N, 6.00. Found: C, 66.87; H, 6.44; N, 5.92.

3-Hydroxy-3-(1-hydroxycyclohexyl)isoindolin-1-one (3h). White solid (175 mg, 71%); *Rf* 0.35 (hexanes-ethyl acetate, 1:5); mp 207 °C; IR (ATR) 3578, 3385, 3183, 1701, 1686, 1614, 1470, 974, 955, 909, 878, 853, 835, 806, 795, 750, 733, 696, 667 cm⁻¹; NMR (DMSO- d_6) δ 0.90–1.02 (m, 1H), 1.07–1.15 (m, 1H), 1.20–1.56 (m, 7H), 1.76–1.84 (m, 1H), 4.30 (brs, 1H), 6.22 (brs, 1H), 7.42–7.46 (m, 1H), 7.50–7.56 (m, 2H), 7.62–7.66 (m, 1H), 8.52 (brs, 1H); ¹³C NMR (DMSO- d_6) δ 21.0 (t), 21.1 (t), 25.5 (t), 30.5 (t), 30.8 (t), 74.4 (s), 91.6 (s), 122.2 (d), 124.8 (d), 128.8 (d), 131.5 (d), 132.6 (s), 148.3 (s), 168.9 (s). Anal. Calcd for C₁₄H₁₇NO₃: C, 68.00; H, 6.93; N, 5.66. Found: C, 67.78; H, 6.94; N, 5.64.

3-Hydroxy-3-(1-hydroxycycloheptyl)isoindolin-1-one (3i). White solid (170 mg, 65%); *Rf* 0.4 (hexanes-ethyl acetate, 1:5); mp 204–205 °C; IR (ATR) 3285, 1665, 1614, 1470, 989, 961, 939, 912, 839, 799, 764, 729, 700, 654 cm⁻¹; ¹H NMR (DMSO-*d₆*) δ 1.18–1.60 (m, 10H), 1.65–1.74 (m, 1H), 1.83–1.91 (m, 1H), 4.32 (brs, 1H), 6.22 (brs, 1H), 7.42–7.46 (m, 1H), 7.50–7.56 (m, 2H), 7.65–7.68 (m, 1H), 8.55 (brs, 1H); ¹³C NMR (DMSO-*d₆*) δ 22.0 (t), 22.5 (t), 29.0 (t), 29.2 (t), 34.8 (t), 35.5 (t), 78.0 (s), 92.0 (s), 122.1 (d), 124.9 (d), 128.8 (d), 131.6 (d), 132.6 (s), 148.5 (s), 168.8 (s). Anal. Calcd for C₁₅H₁₉NO₃: C, 68.94; H, 7.33; N, 5.36. Found: C, 68.96; H, 7.32; N, 5.33.

3-(4-*tert***-Butyl-1-hydroxycyclohexyl)-3-hydroxyisoindolin-1-one (3)**, **70:30 diastereomeric mixture).** White solid (212 mg, 70%); *Rf* 0.5 (hexanes-ethyl acetate, 1:5); mp 222–223 °C; IR (ATR) 3420, 3270, 1676, 1614, 1468, 982, 957, 930, 880, 797, 773, 754, 710, 694, 660 cm⁻¹; ¹H NMR (DMSO-*d*₆) δ 0.78 (q, 3H), 1.04–1.56 (m, 7.7H), 1.61–1.69 (m, 0.3H), 1.81–1.89 (m, 0.7H), 2.02–2.10 (m, 0.3H), 4.26 (brs, 0.3H), 4.27 (brs, 0.7 H), 6.20 (s, 0.3H), 6.21 (brs, 0.7H), 7.42–7.46 (m, 1H), 7.50–7.56 (m, 2H), 7.63–7.66 (m, 1H), 8.50 (brs, 0.7H), 8.51 (brs, 0.3H); ¹³C NMR (DMSO-*d*₆) δ 21.7 (t), 21.9 (t), 22.0 (t), 27.5 (q), 27.7 (q), 30.9 (t), 31.3 (t), 32.1 (t), 32.4 (t), 32.7 (c), 73.7 (s), 74.0 (s), 91.3 (s), 92.0 (s), 121.97 (d), 122.04 (d), 124.6 (d), 124.7 (d), 128.6 (d), 128.7 (d), 131.2 (d), 131.4 (d), 132.5 (s), 132.7 (s), 148.3 (s), 148.6 (s), 168.6 (s). Anal. Calcd for C₁₈H₂₅NO₃: C, 71.26; H, 8.31; N, 4.62. Found: C, 71.22; H, 8.35; N, 4.53.

2-Methyl-3-(propan-2-ylidene)isoindolin-1-one (4a). Pale yellow solid (155 mg, 83%); *Rf* 0.25 (hexanes-ethyl acetate, 5:1); mp 110–112 °C; IR (ATR) 1682, 1638, 1609, 943, 822, 760, 691 cm⁻¹; ¹H NMR (CDCl₃) δ 2.29 (s, 3H), 2.32 (s, 3H), 3.54 (s, 3H), 7.40–7.44 (m, 1H), 7.53–7.57 (m, 1H), 7.81–7.83 (m, 1H), 7.87–7.89 (m, 1H); ¹³C NMR (CDCl₃) δ 22.7 (q), 23.3 (q), 30.9 (q), 118.4 (s), 122.7 (d), 123.1 (d), 127.0 (d), 129.1 (s), 131.2 (d), 131.2 (d),

132.4 (s), 133.6 (s), 167.8 (s). Anal. Calcd for $C_{12}H_{13}NO$: C, 76.98; H, 7.00; N, 7.48. Found: C, 76.83; H, 6.95; N, 7.36.

3-(Propan-2-ylidene)isoindolin-1-one (4b). Pale yellow solid (100 mg, 58%); *Rf* 0.3 (hexanes-ethyl acetate, 2:1); mp 223 °C; IR (ATR) 3157, 1682, 1665, 1611, 1472, 799, 777, 762, 739, 691, 656 cm⁻¹; ¹H NMR (CDCl₃) δ 2.10 (s, 3H), 2.26 (s, 3H), 7.42–7.46 (m, 1H), 7.56–7.61 (m, 1H), 7.82–7.85 (m, 1H), 7.89–7.92 (m, 1H), 8.81 (brs, 1H); ¹³C NMR (CDCl₃, DMSO-*d*₆) δ 20.0 (q), 21.5 (q), 117.4 (q), 122.8 (d), 123.0 (d), 126.9 (d), 129.0 (s), 130.6 (s), 131.4 (d), 136.5 (s), 167.8 (s). Anal. Calcd for C₁₁H₁₁NO: C, 76.28; H, 6.40; N, 8.09. Found: C, 76.17; H, 6.34; N, 8.01.

3-Cyclopentylidene-2-methylisoindolin-1-one (4c). White solid (60 mg, 28%); *Rf* 0.4 (hexanes-ethyl acetate, 2:1); mp 174–175 °C; IR (ATR) 1684, 1647, 1611, 1472, 804, 772, 689, 669 cm⁻¹; ¹H NMR (CDCl₃) δ 1.78–1.90 (m, 4H), 2.87–2.91 (m, 2H), 2.95–2.99 (m, 2H), 3.59 (s, 3H), 7.40–7.45 (m, 1H), 7.53–7.58 (m, 1H), 7.69–7.72 (m, 1H), 7.86–7.89 (m, 1H); ¹³C NMR (CDCl₃) δ 26.4 (t), 27.0 (t), 29.5 (q), 32.7 (t), 33.7 (t), 122.9 (d), 123.1 (d), 127.2 (s), 129.0 (s), 129.3 (s), 129.5 (s), 131.3 (d), 136.6 (s), 167.6 (s). Anal. Calcd for C₁₄H₁₅NO: C, 78.84; H, 7.09; N, 6.57. Found: C, 78.55; H, 7.03; N, 6.46.

3-Cyclopentylideneisoindolin-1-one (4g). Pale yellow solid (76 mg, 38%); *Rf* 0.4 (hexanes-ethyl acetate, 1:1); mp 247 °C; IR (ATR) 3144, 1682, 1672, 1611, 1474, 802, 772, 737, 692 cm⁻¹; ¹H NMR (CDCl₃) δ 1.80–1.96 (m, 4H), 2.59–2.65 (s, 2H), 2.77–2.83 (m, 2H), 7.42–7.47 (m, 1H), 7.56–7.62 (m, 1H), 7.65–7.68 (m, 1H), 7.87–7.91 (m, 1H), 8.04 (brs, 1H); ¹³C NMR (CDCl₃) δ 26.1 (t), 27.3 (t), 30.9 (t), 32.0 (t), 122.4 (d), 123.5 (d), 126.2 (s), 127.3 (d), 128.5 (s), 130.2 (s), 131.7 (d), 136.9 (s), 168.4 (s). Anal. Calcd for C₁₃H₁₃NO: C, 78.36; H, 6.58; N, 7.03. Found: C, 78.27; H, 7.00; N, 6.96.

3-Cyclohexylideneisoindolin-1-one (4h). Pale yellow solid (109 mg, 51%); *Rf* 0.35 (hexanes-ethyl acetate, 2:1); mp 214–215 °C; IR (ATR) 3167, 1678, 1609, 1474, 800, 773, 762, 735, 692, 656 cm⁻¹; ¹H NMR (CDCl₃) δ 1.64–1.79 (m, 6H), 2.43–2.49 (m, 2H), 2.79–2.84 (m, 2H), 7.40–7.46 (m, 1H), 7.54–7.60 (m, 1H), 7.88–7.96 (m, 2H), 8.65 (brs, 1H); ¹³C NMR (CDCl₃) δ 26.2 (t), 27.5 (t), 27.7 (t), 29.8 (t), 31.3 (t), 123.5 (d), 123.6 (d), 126.1 (s), 127.2 (s), 127.4 (d), 131.3 (s), 131.8 (d), 137.0 (s), 168.0 (s). Anal. Calcd for C₁₄H₁₅NO: C, 78.84; H, 7.09; N, 6.57. Found: C, 78.70; H, 7.03; N, 6.49.

3-Cycloheptylideneisoindolin-1-one (4i). Pale yellow solid (84 mg, 37%); *Rf* 0.35 (hexanes-ethyl acetate, 2:1); mp 164–166 °C; IR (ATR) 3174, 1680, 1647, 1611, 1472, 962, 858, 799, 758, 748, 727, 687, 656 cm⁻¹; ¹H NMR (CDCl₃) δ 1.49–2.03 (m, 8H), 2.56–2.67 (m, 2H), 2.80–2.89 (m, 2H), 7.40–7.48 (m, 1H), 7.54–7.61 (m, 1H), 7.79–7.85 (m, 1H), 7.88–7.94 (m, 1H), 8.96 (brs, 1H). ¹³C NMR (CDCl₃) δ 27.3 (t), 28.8 (t), 29.3 (t), 31.2 (t), 32.4 (t), 123.4 (d), 123.5 (d), 127.3 (d), 128.6 (s), 129.0 (s), 130.8 (s), 131.8 (d), 136.6 (s), 168.3 (s). Anal. Calcd for C₁₅H₁₇NO: C, 79.26; H, 7.54; N, 6.16. Found: C, 79.15; H, 7.49; N, 6.08.

3-(4-*tert***-Butylcyclohexylidene)isoindolin-1-one (4j).** White solid (110 mg, 41%); *Rf* 0.8 (hexanes-ethyl acetate, 1:5); mp 200–201 °C; IR (ATR) 3190, 1676, 1665, 1605, 1470, 988, 800, 770, 758, 735, 696 cm⁻¹; ¹H NMR (CDCl₃) δ 0.89 (s, 9H), 1.20–1.37 (m, 3H), 2.00–2.08 (m, 2H), 2.15–2.28 (m, 2H), 2.71–2.78 (m, 1H), 3.42–3.49 (m, 1H), 7.42–7.46 (m, 1H), 7.55–7.59 (m, 1H), 7.90–7.92 (m, 1H), 7.93–7.95 (m, 1H), 8.35 (brs, 1H); ¹³C NMR (CDCl₃) δ 27.5 (q), 28.1 (t), 28.3 (t), 29.6 (t), 31.1 (t), 32.5 (s), 47.7 (d), 123.4 (d), 123.6 (d), 125.9 (s), 127.0 (s), 127.4 (d), 131.4 (s), 137.0 (s), 168.0 (s). Anal. Calcd for C₁₈H₂₃NO: C, 80.26; H, 8.61; N, 5.20. Found: C, 80.08; H, 8.53; N, 5.11.

3-Hydroxy-3-(1-hydroxybutyl)isoindolin-1-one (6c, 50:50 diastereomeric mixture). Colorless paste (159 mg, 72%); *Rf* 0.5 (ethyl acetate); ¹H NMR (CDCl₃) δ 0.75 (t, 1.5H, *J* = 7.2 Hz), 0.85 (t, 1.5H, *J* = 7.2 Hz), 1.16–1.61 (m, 4H), 3.35 (brs, 0.5H), 3.88 (d, 0.5H, *J* = 10.0 Hz), 4.10–4.13 (m, 0.5H), 4.82 (brs, 0.5H), 5.00 (brs, 0.5H), 7.36–7.42 (m, 1H), 7.46–7.57 (m, 3H), 7.63–7.68 (m, 1H); ¹³C NMR (CDCl₃) δ 13.6 (q), 13.7 (q), 18.9 (t), 19.2 (t), 32.3 (t), 32.6 (t), 74.9 (d), 75.1 (d), 89.8 (s), 90.1 (s), 122.1 (d), 123.2 (d), 123.4 (d), 123.6 (d), 129.2 (d), 129.4 (d), 130.9 (s),

The Journal of Organic Chemistry

131.1 (s), 132.3 (d), 132.6 (d), 146.2 (s), 146.4 (s), 170.5 (s), 171.1(s); HRMS (ESI, ion trap) calcd for $C_{12}H_{16}NO_3$ (M + H)⁺ 222.1130, found 222.1128.

3-Hydroxy-3-(1-hydroxy-2-methylpropyl)isoindolin-1-one (6d, 50:50 diastereomeric mixture). Colorless paste (155 mg, 70%); *Rf* 0.55 (ethyl acetate); ¹H NMR (CDCl₃) δ 0.63 (d, 1.5H, *J* = 6.9 Hz), 0.80 (d, 1.5H, *J* = 6.9 Hz), 0.82 (d, 1.5H, *J* = 6.9 Hz), 0.91 (d, 1.5H, *J* = 6.9 Hz), 1.38–1.47 (m, 0.5H), 1.84–1.93 (m, 0.5H), 3.73 (brs, 1H), 3.96 (d, 0.5H, *J* = 4.0 Hz), 4.19 (brs, 0.5H), 5.32 (brs, 0.5H), 5.50 (brs, 0.5H), 7.32–7.48 (m, 3.5H), 7.62–7.67 (m, 0.5H), 7.99–8.07 (m, 1H); ¹³C NMR (CDCl₃) δ 16.6 (q), 17.0 (q), 21.6 (q), 21.7 (q), 29.0 (d), 29.1 (d), 79.2 (d), 79.5 (d), 89.9 (s), 90.0 (s), 122.5 (d), 123.4 (d), 123.6 (d), 124.2 (d), 129.5 (d), 129.6 (d), 130.8 (s), 131.1 (s), 132.4 (d), 132.6 (d), 146.4 (s), 147.0 (s), 170.40 (s), 170.42 (s); HRMS (ESI, ion trap) calcd for C₁₂H₁₆NO₃ (M + H)⁺ 222.1130, found 222.1127.

3-Butylidene-2-methylisoindolin-1-one (7a, 50:50 geometric mixture). Colorless paste (159 mg, 79%); *Rf* 0.45 (hexanes-ethyl acetate, 5:1); ¹H NMR (CDCl₃) δ 1.13 (t, 1.5H, *J* = 7.3 Hz), 1.06 (t, 1.5H, *J* = 7.3 Hz), 1.56–1.71 (m, 2H), 2.56–2.66 (m, 2H), 3.26 (s, 1.5H), 3.53 (s, 1.5H), 5.54 (t, 0.5H, *J* = 7.6 Hz), 5.63 (t, 0.5H, *J* = 8.0 Hz), 7.40–7.44 (m, 0.5H), 7.44–7.48 (m, 0.5H), 7.50–7.54 (m, 0.5H), 7.54–7.58 (m, 0.5H), 7.59–7.62 (m, 0.5H), 7.79–7.82 (m, 1H), 7.86–7.88 (m, 0.5H); ¹³C NMR (CDCl₃) δ 13.7 (q), 13.8 (q), 23.2 (t), 23.7 (t), 25.7 (q), 28.3 (t), 29.07 (q), 29.14 (t), 108.9 (d), 112.0 (d), 118.5 (d), 122.8 (d), 123.0 (d), 123.1 (d), 128.0 (d), 128.3 (d), 130.6 (s), 131.3 (d), 131.5 (d), 134.8 (s), 135.2 (s), 136.0 (s), 137.6 (s), 166.2 (s), 167.9 (s); HRMS (ESI, ion trap) calcd for C₁₃H₁₆NO (M + H)⁺ 202.1232, found 202.1231.

(*E*)-2-Methyl-3-(2-methylpropylidene)isoindolin-1-one (*E*-7b). White solid (66 mg, 33%); *Rf* 0.45 (hexanes-ethyl acetate, 5:1); mp 111–112 °C; IR (ATR) 1692, 1655, 1647, 1614, 1473, 968, 825, 804, 777, 692 cm⁻¹; ¹H NMR (CDCl₃) δ 1.23 (d, 6H, *J* = 6.7 Hz), 3.25 (s, 3H), 3.28–3.36 (m, 1H), 5.30 (d, 1H, *J* = 9.5 Hz), 7.44–7.48 (m, 1H), 7.54–7.59 (m, 1H), 7.80–7.84 (m, 1H), 7.85–7.88 (m, 1H); ¹³C NMR (CDCl₃) δ 23.6 (q), 25.8 (q), 26.6 (d), 119.6 (d), 123.1 (d), 123.3 (d), 128.4 (d), 130.8 (s), 131.6 (d), 134.7 (s), 135.1 (s), 166.2 (s). Anal. Calcd for C₁₃H₁₅NO: C, 77.58; H, 7.51; N, 6.96. Found: C, 77.57; H, 7.51; N, 6.91.

(Z)-2-Methyl-3-(2-methylpropylidene)isoindolin-1-one (Z-7b). White solid (99 mg, 49%); *Rf* 0.5 (hexanes-ethyl acetate, 5:1); mp 138–139 °C; ¹H NMR (CDCl₃) δ 1.18 (d, 6H, *J* = 6.8 Hz), 3.24–3.33 (m, 1H), 3.53 (s, 3H), 5.47 (d, 1H, *J* = 10.6 Hz), 7.39–7.44 (m, 1H), 7.50–7.54 (m, 1H), 7.59–7.62 (m, 1H), 7.79–7.82 (m, 1H); ¹³C NMR (CDCl₃) δ 24.1 (q), 25.7 (d), 28.9 (q), 116.2 (d), 118.7 (d), 122.9 (d), 128.1 (d), 128.2 (s), 131.4 (d), 132.8 (s), 137.9 (s), 167.9 (s); HRMS (ESI, ion trap) calcd for C₁₃H₁₆NO (M + H)⁺ 202.1232, found 202.1230.

(*E*)-3-(3-Methoxybenzylidene)-2-methylisoindolin-1-one (*E*-**7g**). White solid (113 mg, 43%); *Rf* 0.6 (hexanes-ethyl acetate, 2:1); mp 145–147 °C; IR (ATR) 1697, 1655, 1595, 1584, 1489, 1474, 858, 814, 799, 773, 739, 691 cm⁻¹; ¹H NMR (CDCl₃) δ 3.38 (s, 3H), 3.83 (s, 3H), 6.48 (s, 1H), 6.91–6.94 (m, 1H), 6.98–7.00 (m, 1H), 7.03–7.06 (m, 1H), 7.30–7.43 (m, 4H), 7.82–7.84 (m, 1H); ¹³C NMR (CDCl₃) δ 26.1 (q), 55.3 (q), 110.0 (d), 113.6 (d), 114.7 (d), 121.9 (d), 123.1 (d), 123.2 (d), 129.2 (d), 129.7 (d), 130.6 (s), 131.4 (d), 134.8 (s), 136.5 (s), 137.6 (s), 159.8 (s), 166.6 (s). Anal. Calcd for C₁₇H₁₅NO₂: C, 76.96; H, 5.70; N, 5.28. Found: C, 76.90; H, 5.73; N, 5.20.

(*E*)-3-(2-Methoxybenzylidene)-2-methylisoindolin-1-one (*E*-7h). Pale yellow solid (109 mg, 41%); *Rf* 0.5 (hexanes-ethyl acetate, 2:1); mp 141–143 °C; IR (ATR) 1713, 1636, 1599, 1578, 1487, 1472, 824, 764, 739, 712, 689 cm⁻¹; ¹H NMR (CDCl₃) δ 3.41 (s, 3H), 3.86 (s, 3H), 6.47 (s, 1H), 6.96–7.02 (m, 2H), 7.28–7.33 (m, 1H), 7.35–7.43 (m, 3H), 7.46–7.50 (m, 1H), 7.80–7.84 (m, 1H); ¹³C NMR (CDCl₃) δ 26.2 (q), 55.5 (q), 106.8 (d), 110.7 (d), 120.4 (d), 122.9 (d), 123.0 (d), 123.7 (s), 129.0 (d), 129.6 (d), 130.6 (s), 131.3 (d), 135.0 (s), 137.0 (s), 157.5 (s), 166.5 (s). Anal. Calcd for C₁₇H₁₅NO₂: C, 76.96; H, 5.70; N, 5.28. Found: C, 76.89; H, 5.75; N, 5.22.

(E)-3-(4-Fluorobenzylidene)-2-methylisoindolin-1-one (E-7j). White solid (115 mg, 46%); *Rf* 0.55 (hexanes-ethyl acetate, 2:1); mp 155–157 °C; IR (ATR) 1694, 1645, 1618, 1596, 1506, 1474, 847, 822, 812, 772, 746, 692 cm⁻¹; ¹H NMR (CDCl₃) δ 3.38 (s, 3H), 6.44 (s, 1H), 7.11–7.16 (m, 2H), 7.23–7.26 (m, 1H), 7.30–7.34 (m, 1H), 7.39–7.45 (m, 3H), 7.82–7.85 (m, 1H); ¹³C NMR (CDCl₃) δ 26.1 (q), 108.8 (d), 115.7 (d, *J*_{CCCF} = 21.5 Hz), 122.8 (d), 123.2 (d), 129.3 (d), 130.6 (s), 131.1 (s, *J*_{CCCCF} = 3.6 Hz), 131.2 (d, *J*_{CCCF} = 7.2 Hz), 131.5 (s), 134.7 (s), 137.8 (s), 162.3 (s, *J*_{CF} = 247.3 Hz), 166.5 (s). Anal. Calcd for C₁₆H₁₂FNO: C, 75.88; H, 4.78; N, 5.53. Found: C, 75.89; H, 4.76; N, 5.47.

(*E*)-2-Methyl-3-(naphthalen-1-ylmethylene)isoindolin-1-one (*E*-7k). Yellow paste (157 mg, 55%); *Rf* 0.5 (hexanes-ethyl acetate, 2:1); ¹H NMR (CDCl₃) δ 3.51 (s, 3H), 6.81 (s, 1H), 6.89 (d, 1H, *J* = 6.9 Hz), 7.13–7.17 (m, 1H), 7.33–7.37 (m, 1H), 7.48–7.57 (m, 3H), 7.61–7.64 (m, 1H), 7.83 (d, 1H, *J* = 7.5 Hz), 7.91–7.96 (m, 2H), 8.02 (d, 1H, *J* = 8.2 Hz); ¹³C NMR (CDCl₃) δ 26.1 (q), 107.7 (d), 122.9 (d), 123.1 (d), 125.0 (d), 125.4 (d), 126.3 (d), 126.4 (d), 127.7 (d), 128.5 (d), 129.0 (d), 130.5 (s), 131.4 (d), 132.0 (s), 132.2 (s), 133.6 (s), 134.9 (s), 138.3 (s), 166.6 (s); HRMS (ESI, ion trap) calcd for C₂₀H₁₆NO (M + H)⁺ 286.1232, found 286.1231.

(E)-2-Methyl-3-(naphthalen-2-ylmethylene)isoindolin-1-one (E-7I). Pale yellow solid (126 mg, 44%); *Rf* 0.65 (hexanes-ethyl acetate, 2:1); mp 164–166 °C; IR (ATR) 1695, 1638, 1595, 1506, 1474, 862, 824, 810, 772, 750, 741, 691 cm⁻¹; ¹H NMR (CDCl₃) δ 3.43 (s, 3H), 6.65 (s, 1H), 7.22–7.28 (m, 1H), 7.34–7.37 (m, 1H), 7.39–7.43 (m, 1H), 7.51–7.57 (m, 3H), 7.81–7.95 (m, 5H); ¹³C NMR (CDCl₃) δ 26.2 (q), 110.2 (d), 123.0 (d), 123.1 (d), 126.3 (d), 126.5 (d), 127.5 (d), 127.8 (d), 127.9 (d), 128.3 (d), 128.5 (d), 129.3 (d), 130.6 (s), 131.5 (d), 132.6 (s), 132.7 (s), 133.3 (s), 134.9 (s), 137.7 (s), 166.6 (s). Anal. Calcd for C₂₀H₁₅NO: C, 84.19; H, 5.30; N, 4.91. Found: C, 84.15; H, 5.30; N, 4.88.

(Z)-3-(Naphthalen-1-ylmethylene)isoindolin-1-one (Z-7s). Yellow solid (154 mg, 57%); *Rf* 0.45 (hexanes-ethyl acetate, 2:1); mp 224–225 °C; IR (ATR) 3171, 1707, 1655, 1647, 1612, 1591, 1508, 866, 824, 797, 775, 748 cm⁻¹; ¹H NMR (CDCl₃) δ 7.09 (s, 1H), 7.51–7.62 (m, 5H), 7.68–7.72 (m, 1H), 7.82–7.96 (m, 5H), 8.05–8.11 (m, 1H); ¹³C NMR (CDCl₃) δ 103.3 (d), 120.0 (d), 123.6 (d), 124.4 (d), 125.6 (d), 126.4 (d), 126.6 (d), 128.6 (d), 128.8 (d), 129.3 (s), 129.4 (d), 131.6 (s), 131.8 (s), 132.3 (d), 133.9 (s), 134.8 (s), 137.6 (s), 168.4 (s). Anal. Calcd for C₁₉H₁₃NO: C, 84.11; H, 4.83; N, 5.16. Found: C, 84.07; H, 4.83; N, 5.13.

(*E*)-3-(Naphthalen-2-ylmethylene)isoindolin-1-one (*E*-7t). Pale yellow solid (63 mg, 23%); *Rf* 0.35 (hexanes-ethyl acetate, 2:1); mp 196–198 °C; IR (ATR) 3189, 1697, 1653, 1611, 1506, 1472, 864, 843, 818, 748, 739, 689 cm⁻¹; ¹H NMR (CDCl₃) δ 6.82 (s, 1H), 7.31–7.37 (m, 1H), 7.44–7.50 (m, 1H), 7.50–7.59 (m, 4H), 7.80–7097 (m, 5H), 9.17 (brs, 1H); ¹³C NMR (CDCl₃) δ 112.3 (d), 123.36 (d), 123.43 (d), 126.4 (d), 126.5 (d), 127.3 (d), 127.8 (d), 128.0 (d), 128.3 (s), 134.8 (s), 135.5 (s), 168.6 (s); HRMS (ESI, ion trap) calcd for C₁₉H₁₄NO (M + H)⁺ 272.1075, found 272.1073.

Typical Procedure of Isomerization of 7. A solution of 7m (*Z*:*E* = 70:30, 0.5 mmol) and PPTS (10 mg) in toluene (10 mL) was refluxed using Dean–Stark apparatus under nitrogen atmosphere for 12 h. After the solvent was removed *in vacuo*, the residue was purified by column chromatography on silica gel (hexanes-EtOAc) to give 7m in 85% yield (188 mg, *Z*:*E* = >99:1).

X-ray Crystallographic Analysis. All measurements were made on a Rigaku RAXIS imaging plate area detector with graphite monochromated Mo K α radiation. The structure was solved by direct methods with SIR-97 and refined with SHELXL-97. The nonhydrogen atoms were refined anisotropically. Hydrogen atoms were refined isotropically. All calculations were performed using the YADOKARI-XG software package.

Crystal Data of 3d. $C_{15}H_{19}NO_3$, FW = 261.31, mp 175 °C, monoclinic, $P2_{1/a}$ (no 14), colorless block, a = 11.830(2) Å, b = 8.916(2) Å, c = 12.804(2) Å, $\beta = 99.082(9)$, V = 1333.6(5) Å³, T = 298 K, Z = 4, $D_{calcd} = 1.302$ g/cm³, $\mu = 0.90$ cm⁻¹, GOF = 1.054.

Crystal Data of 3f. $C_{19}H_{27}NO_3$, FW = 317.42, mp 177 °C, monoclinic, $P2_{1/c}$ (no 14), colorless block, a = 13.919(11) Å, b = 9.284(6) Å, c = 14.029(9) Å, $\beta = 88.10(3)$, V = 1812(2) Å³, T = 298 K, Z = 4, $D_{calcd} = 1.164$ g/cm³, $\mu = 0.78$ cm⁻¹, GOF = 1.048.

Crystal Data of 4b. $C_{11}H_{11}$ NO, FW = 173.21, mp 223 °C, monoclinic, $P2_{1/n}$ (no 14), pale yellow block, a = 8.7086(12) Å, b = 5.7304(6) Å, c = 17.984(2) Å, $\beta = 101.455(6)$, V = 879.60(19) Å³, T = 298 K, Z = 4, $D_{calcd} = 1.308$ g/cm³, $\mu = 0.84$ cm⁻¹, GOF = 1.066.

Crystal Data of *E***-7b.** $C_{13}H_{15}NO$, FW = 201.26, mp 111–112 °C, monoclinic, $P2_{1/c}$ (no 14), colorless block, a = 7.7636(7) Å, b = 16.5858(11) Å, c = 9.1023(7) Å, $\beta = 107.742(4)$, V = 1116.32(5) Å³, T = 298 K, Z = 4, $D_{calcd} = 1.198$ g/cm³, $\mu = 0.76$ cm⁻¹, GOF = 1.103.

Crystal Data of Z-7d. $C_{12}H_{13}NO$, FW = 187.23, mp 188–190 °C, monoclinic, $P2_{1/n}$ (no 14), colorless block, a = 10.642(5) Å, b = 19.168(12) Å, c = 11.125(4) Å, $\beta = 111.89(2)$, V = 2105.7(18) Å³, T = 298 K, Z = 8, $D_{calcd} = 1.181$ g/cm³, $\mu = 0.75$ cm⁻¹, GOF = 0.898.

Crystal Data of E-7g. $C_{17}\dot{H}_{15}NO_2$, FW = 265.30, mp 145–147 °C, triclinic, P_{-1} (no 2), colorless block, a = 8.5149(12) Å, b = 8.6262(13) Å, c = 10.788(2) Å, $\alpha = 110.318(9)$, $\beta = 103.934(7)$, $\gamma = 101.948(8)$, V = 683.5(2) Å³, T = 298 K, Z = 2, $D_{calcd} = 1.289$ g/cm³, $\mu = 0.85$ cm⁻¹, GOF = 0.956.

Crystal Data of *E***-7i.** $C_{17}H_{13}NO_3$, FW = 279.28, mp 144–145 °C, monoclinic, $P2_{1/a}$ (no 14), yellow block, a = 7.9701(9) Å, b = 16.241(2) Å, c = 10.4629(11) Å, $\beta = 87.440(5)$, V = 1353.0(3) Å³, T = 298 K, Z = 4, $D_{calcd} = 1.371$ g/cm³, $\mu = 0.95$ cm⁻¹, GOF = 1.019.

Crystal Data of E-7j. C₁₆H₁₂FNO, FW = 253.27, mp 155–157 °C, monoclinic, P2_{1/c} (no 14), colorless block, a = 9.5792(7) Å, b = 11.4148(9) Å, c = 11.4639(7) Å, $\beta = 93.012(4)$, V = 1251.78(15) Å³, T = 298 K, Z = 4, $D_{calcd} = 1.344$ g/cm³, $\mu = 0.94$ cm⁻¹, GOF = 1.069. **Crystal Data of Z-7p.** C₁₆H₁₃NO₂, FW = 251.27, mp 160–162 °C, triclinic, P₋₁ (no 2), colorless block, a = 7.1350(9) Å, b = 9.5257(15) Å, c = 10.5396(18) Å, $\alpha = 101.925(6)$, $\beta = 109.686(7)$, $\gamma = 104.211(5)$, V = 620.11(16) Å³, T = 298 K, Z = 2, $D_{calcd} = 1.346$ g/ cm³, $\mu = 0.89$ cm⁻¹, GOF = 1.063.

Crystal Data of Z-8a. $C_{13}H_{15}NO_2$, FW = 217.26, mp 169–170 °C, monoclinic, C2/c (no 15), colorless block, a = 19.315(19) Å, b = 15.066(15) Å, c = 7.783(9) Å, $\beta = 103.62(4)$, V = 2201(4) Å³, T = 298 K, Z = 8, $D_{calcd} = 1.311$ g/cm³, $\mu = 0.88$ cm⁻¹, GOF = 1.027.

ASSOCIATED CONTENT

S Supporting Information

A PDF file of ¹H and ¹³C NMR spectra of products, X-ray crystallographic data (ortep) of **3d**, **3f**, **4b**, *E*-7**b**, *Z*-7**d**, *E*-7**g**, *E*-7**i**, *E*-7**j**, *Z*-7**p**, and *Z*-8**a** and the results of DFT calculations for 7e and 7m. Crystallographic CIF files for **3d**, **3f**, **4b**, *E*-7**b**, *Z*-7**d**, *E*-7**g**, *E*-7**i**, *E*-7**j**, *Z*-7**p**, and *Z*-8**a**. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*E-mail address: kise@bio.tottori-u.ac.jp.

Notes

The authors declare no competing financial interest.

REFERENCES

(1) (a) Yoda, H.; Matsuda, K.; Nomura, H.; Takabe, K. *Tetrahedron Lett.* **2000**, *41*, 1775. (b) Yoda, H.; Nakahama, A.; Koketsu, T.; Takabe, K. *Tetrahedron Lett.* **2002**, *43*, 4667. (c) Chiara, J. L.; Garcia, A.; Cristobal-Lumbroso, G. J. Org. Chem. **2005**, *70*, 4142. (d) Vacas, T.; Álvarez, E.; Chiara, J. L. Org. Lett. **2007**, *9*, 5445.

(2) (a) Kise, N.; Isemoto, S.; Sakurai, T. Org. Lett. 2009, 11, 4902.
(b) Kise, N.; Sakurai, T. Tetrahedron Lett. 2010, 51, 70. (c) Kise, N.; Isemoto, S.; Sakurai, T. J. Org. Chem. 2011, 76, 9856. (d) Kise, N.; Isemoto, S.; Sakurai, T. Tetrahedron 2012, 68, 8805.

(3) For reviews, see: (a) McMurry, J. E. Chem. Rev. 1989, 89, 1513.
(b) Fürstner, A.; Bogdanović, B. Angew. Chem., Int. Ed. 1996, 35, 2442.

(4) For recent reports, see: (a) Sabelle, S.; Hydrio, J.; Leclerc, Eric; Mioskowski, C.; Renard, P.-Y. *Tetrahedron Lett.* 2002, 43, 3645.
(b) Top, S.; Vessières, A.; Leclercq, G.; Quivy, J.; Tang, J.; Vaissermann, J.; Huché, M.; Jaouen, G. *Chem.—Eur. J.* 2003, 9, 5223. (c) Pigeon, P.; Top, S.; Vessières, A.; Huché, M.; Hillard, E. A.; Salomon, E.; Jaouen, G. *J. Med. Chem.* 2005, 48, 2814. (d) Duan, X.-F.; Zeng, J.; Lü, J.-W.; Zhang, Z.-B. *J. Org. Chem.* 2006, 71, 9873.
(e) Duan, X.-F.; Zeng, J.; Zhang, Z.-B.; Zi, G.-F. *J. Org. Chem.* 2007, 72, 10283. (f) Seo, J. W.; Kim, H. J.; Lee, B. S.; Katzenellenbogen, J. A.; Chi, D. Y. *J. Org. Chem.* 2008, 73, 715. (g) Rey, J.; Hu, H.; Snyder, J. P.; Barrett, A. G. M. *Tetrahedron* 2012, 68, 9211.

(5) Kise, N.; Akazai, S.; Sakurai, T. *Tetrahedron Lett.* 2011, 52, 6627.
(6) Kise, N.; Takenaga, Y.; Ishikawa, Y.; Morikami, Y.; Sakurai, T. *Tetrahedron Lett.* 2012, 53, 1940.

(7) For recent syntheses of alkylideneisoindoline-1-ones, see:
(a) Couture, A.; Deniau, E.; Grandclaudon, P.; Hoarau, C.; Rys, V. *Tetrahedron Lett.* 2002, 43, 2207. (b) Lu, W.-D.; Lin, C.-F.; Wang, C.-J.; Wang, S.-J.; Wu, M.-J. *Tetrahedron* 2002, 58, 7315. (c) Rys, V.; Couture, A.; Deniau, E.; Grandclaudon, P. *Tetrahedron* 2003, 59, 6615. (d) Couty, S. C.; Liegault, B.; Meyer, C.; Cossy, J. Org. Lett. 2004, 6, 2511. (e) Yao, T.; Larock, R. C. J. Org. Chem. 2005, 70, 1432. (f) Lamblin, M.; Couture, A.; Deniau, E.; Grandclaudon, P. *Synthesis* 2006, 1333. (g) Cao, H.; McNamee, L.; Alper, H. Org. Lett. 2008, 10, 5281. (h) Sun, C.; Xu, B. J. Org. Chem. 2008, 73, 7361. (i) Li, L.; Wang, L.; Zhang, X.; Jiang, Y.; Ma, D. Org. Lett. 2009, 11, 1309. (j) Belluau, V.; Noeureuil, P.; Ratzke, E.; Skvortsov, A.; Gallagher, S.; Motti, C. A.; Olegemöller, M. *Tetrahedron Lett.* 2010, 51, 4738. (k) Hellal, M.; Cuny, G. D. *Tetrahedron Lett.* 2011, 52, 5508.

(8) (a) Foote, C. S.; Lin, J. W.-P. Tetrahedron Lett. 1968, 9, 3267.
(b) Huber, J. E. Tetrahedron Lett. 1968, 9, 3271.

(9) Uozumi, Y.; Kawasaki, N.; Mori, E.; Mori, M.; Shibasaku, M. J. Am. Chem. Soc. **1989**, 111, 3725.